A Method for Multi-relational Classification Using Single and Multi-feature Aggregation Functions

نویسندگان

  • Richard Frank
  • Flavia Moser
  • Martin Ester
چکیده

This paper presents a novel method for multi-relational classification via an aggregation-based Inductive Logic Programming (ILP) approach. We extend the classical ILP representation by aggregation of multiple-features which aid the classification process by allowing for the analysis of relationships and dependencies between different features. In order to efficiently learn rules of this rich format, we present a novel algorithm capable of performing aggregation with the use of virtual joins of the data. By using more expressive aggregation predicates than the existential quantifier used in standard ILP methods, we improve the accuracy of multi-relational classification. This claim is supported by experimental evaluation on three different real world datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis

In this paper, wire electrical discharge machining of D3 tool steel is studied. Influence of pulse-on time, pulse-off time, peak current and wire speed are investigated for MRR, dimensional deviation, gap current and machining time, during intricate machining of D3 tool steel. Taguchi method is used for single characteristics optimization and to optimize all four process parameters simultaneous...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Using Gray Relational Analysis and Taguchi Technique in Solving Multi-objective Problems for Turning Operation of Austenitic Stainless Steel

In this study, the application of gray relational analysis (GRA) and Taguchi method in multi-criteria process parameters selection of turning operation has been investigated. The process responses under study are material removal rate (MRR) and surface roughness (SR); in turn, the input parameters include cutting speed, feed rate, depth of cut and nose radius of the cutting tool. The proposed a...

متن کامل

Trapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making

In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007